New Paper: Manually annotated and curated Dataset of diverse Weed Species in Maize and Sorghum for Computer Vision
New paper about an impressive manually annotated and curated dataset of diverse weed species in maize and sorghum for computer vision. Here we present a dataset, the Moving Fields Weed Dataset (MFWD), which captures the growth of 28 weed species commonly found in sorghum and maize fields in Germany. A total of 94,321 images were acquired in a fully automated, high-throughput phenotyping facility to track over 5,000 individual plants at high spatial and temporal resolution. A rich set of manually curated ground truth information is also provided, which can be used not only for plant species classification, object detection and instance segmentation tasks, but also for multiple object tracking.